EconPapers    
Economics at your fingertips  
 

Optimal Permutation Recovery in Permuted Monotone Matrix Model

Rong Ma, T. Tony Cai and Hongzhe Li

Journal of the American Statistical Association, 2021, vol. 116, issue 535, 1358-1372

Abstract: Motivated by recent research on quantifying bacterial growth dynamics based on genome assemblies, we consider a permuted monotone matrix model Y=ΘΠ+Z , where the rows represent different samples, the columns represent contigs in genome assemblies and the elements represent log-read counts after preprocessing steps and Guanine-Cytosine (GC) adjustment. In this model, Θ is an unknown mean matrix with monotone entries for each row, Π is a permutation matrix that permutes the columns of Θ, and Z is a noise matrix. This article studies the problem of estimation/recovery of Π given the observed noisy matrix Y. We propose an estimator based on the best linear projection, which is shown to be minimax rate-optimal for both exact recovery, as measured by the 0-1 loss, and partial recovery, as quantified by the normalized Kendall’s tau distance. Simulation studies demonstrate the superior empirical performance of the proposed estimator over alternative methods. We demonstrate the methods using a synthetic metagenomics dataset of 45 closely related bacterial species and a real metagenomic dataset to compare the bacterial growth dynamics between the responders and the nonresponders of the IBD patients after 8 weeks of treatment. Supplementary materials for this article are available online.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1713794 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1358-1372

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1713794

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1358-1372