Using Maximum Entry-Wise Deviation to Test the Goodness of Fit for Stochastic Block Models
Jianwei Hu,
Jingfei Zhang,
Hong Qin,
Ting Yan and
Ji Zhu
Journal of the American Statistical Association, 2021, vol. 116, issue 535, 1373-1382
Abstract:
Abstract–The stochastic block model is widely used for detecting community structures in network data. How to test the goodness of fit of the model is one of the fundamental problems and has gained growing interests in recent years. In this article, we propose a novel goodness-of-fit test based on the maximum entry of the centered and rescaled adjacency matrix for the stochastic block model. One noticeable advantage of the proposed test is that the number of communities can be allowed to grow linearly with the number of nodes ignoring a logarithmic factor. We prove that the null distribution of the test statistic converges in distribution to a Gumbel distribution, and we show that both the number of communities and the membership vector can be tested via the proposed method. Furthermore, we show that the proposed test has asymptotic power guarantee against a class of alternatives. We also demonstrate that the proposed method can be extended to the degree-corrected stochastic block model. Both simulation studies and real-world data examples indicate that the proposed method works well. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1722676 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1373-1382
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1722676
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().