Inference on Selected Subgroups in Clinical Trials
Xinzhou Guo and
Xuming He
Journal of the American Statistical Association, 2021, vol. 116, issue 535, 1498-1506
Abstract:
When existing clinical trial data suggest a promising subgroup, we must address the question of how good the selected subgroup really is. The usual statistical inference applied to the selected subgroup, assuming that the subgroup is chosen independent of the data, may lead to an overly optimistic evaluation of the selected subgroup. In this article, we address the issue of selection bias and develop a de-biasing bootstrap inference procedure for the best selected subgroup effect. The proposed inference procedure is model-free, easy to compute, and asymptotically sharp. We demonstrate the merit of our proposed method by reanalyzing the MONET1 trial and show that how the subgroup is selected post hoc should play an important role in any statistical analysis. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1740096 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1498-1506
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1740096
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().