A Bayesian Hierarchical CACE Model Accounting for Incomplete Noncompliance With Application to a Meta-analysis of Epidural Analgesia on Cesarean Section
Jincheng Zhou,
James S. Hodges and
Haitao Chu
Journal of the American Statistical Association, 2021, vol. 116, issue 536, 1700-1712
Abstract:
Noncompliance with assigned treatments is a common challenge in analyzing and interpreting randomized clinical trials (RCTs). One way to handle noncompliance is to estimate the complier-average causal effect (CACE), the intervention’s efficacy in the subpopulation that complies with assigned treatment. In a two-step meta-analysis, one could first estimate CACE for each study, then combine them to estimate the population-averaged CACE. However, when some trials do not report noncompliance data, the two-step meta-analysis can be less efficient and potentially biased by excluding these trials. This article proposes a flexible Bayesian hierarchical CACE framework to simultaneously account for heterogeneous and incomplete noncompliance data in a meta-analysis of RCTs. The models are motivated by and used for a meta-analysis estimating the CACE of epidural analgesia on cesarean section, in which only 10 of 27 trials reported complete noncompliance data. The new analysis includes all 27 studies and the results present new insights on the causal effect after accounting for noncompliance. Compared to the estimated risk difference of 0.8% (95% CI: –0.3%, 1.9%) given by the two-step intention-to-treat meta-analysis, the estimated CACE is 4.1% (95% CrI: –0.3%, 10.5%). We also report simulation studies to evaluate the performance of the proposed method. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1900859 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1700-1712
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1900859
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().