On Robustness of Principal Component Regression
Anish Agarwal,
Devavrat Shah,
Dennis Shen and
Dogyoon Song
Journal of the American Statistical Association, 2021, vol. 116, issue 536, 1731-1745
Abstract:
Principal component regression (PCR) is a simple, but powerful and ubiquitously utilized method. Its effectiveness is well established when the covariates exhibit low-rank structure. However, its ability to handle settings with noisy, missing, and mixed-valued, that is, discrete and continuous, covariates is not understood and remains an important open challenge. As the main contribution of this work, we establish the robustness of PCR, without any change, in this respect and provide meaningful finite-sample analysis. To do so, we establish that PCR is equivalent to performing linear regression after preprocessing the covariate matrix via hard singular value thresholding (HSVT). As a result, in the context of counterfactual analysis using observational data, we show PCR is equivalent to the recently proposed robust variant of the synthetic control method, known as robust synthetic control (RSC). As an immediate consequence, we obtain finite-sample analysis of the RSC estimator that was previously absent. As an important contribution to the synthetic controls literature, we establish that an (approximate) linear synthetic control exists in the setting of a generalized factor model, or latent variable model; traditionally in the literature, the existence of a synthetic control needs to be assumed to exist as an axiom. We further discuss a surprising implication of the robustness property of PCR with respect to noise, that is, PCR can learn a good predictive model even if the covariates are tactfully transformed to preserve differential privacy. Finally, this work advances the state-of-the-art analysis for HSVT by establishing stronger guarantees with respect to the l2,∞ -norm rather than the Frobenius norm as is commonly done in the matrix estimation literature, which may be of interest in its own right.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1928513 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1731-1745
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1928513
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().