EconPapers    
Economics at your fingertips  
 

Integrating Multisource Block-Wise Missing Data in Model Selection

Fei Xue and Annie Qu

Journal of the American Statistical Association, 2021, vol. 116, issue 536, 1914-1927

Abstract: For multisource data, blocks of variable information from certain sources are likely missing. Existing methods for handling missing data do not take structures of block-wise missing data into consideration. In this article, we propose a multiple block-wise imputation (MBI) approach, which incorporates imputations based on both complete and incomplete observations. Specifically, for a given missing pattern group, the imputations in MBI incorporate more samples from groups with fewer observed variables in addition to the group with complete observations. We propose to construct estimating equations based on all available information, and integrate informative estimating functions to achieve efficient estimators. We show that the proposed method has estimation and model selection consistency under both fixed-dimensional and high-dimensional settings. Moreover, the proposed estimator is asymptotically more efficient than the estimator based on a single imputation from complete observations only. In addition, the proposed method is not restricted to missing completely at random. Numerical studies and ADNI data application confirm that the proposed method outperforms existing variable selection methods under various missing mechanisms. Supplementary materials for this article are available online.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1751176 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1914-1927

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1751176

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1914-1927