Estimating Mixed Memberships With Sharp Eigenvector Deviations
Xueyu Mao,
Purnamrita Sarkar and
Deepayan Chakrabarti
Journal of the American Statistical Association, 2021, vol. 116, issue 536, 1928-1940
Abstract:
We consider the problem of estimating community memberships of nodes in a network, where every node is associated with a vector determining its degree of membership in each community. Existing provably consistent algorithms often require strong assumptions about the population, are computationally expensive, and only provide an overall error bound for the whole community membership matrix. This article provides uniform rates of convergence for the inferred community membership vector of each node in a network generated from the mixed membership stochastic blockmodel (MMSB); to our knowledge, this is the first work to establish per-node rates for overlapping community detection in networks. We achieve this by establishing sharp row-wise eigenvector deviation bounds for MMSB. Based on the simplex structure inherent in the eigen-decomposition of the population matrix, we build on established corner-finding algorithms from the optimization community to infer the community membership vectors. Our results hold over a broad parameter regime where the average degree only grows poly-logarithmically with the number of nodes. Using experiments with simulated and real datasets, we show that our method achieves better error with lower variability over competing methods, and processes real world networks of up to 100,000 nodes within tens of seconds. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1751645 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1928-1940
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1751645
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().