Smooth Backfitting of Proportional Hazards With Multiplicative Components
Munir Hiabu,
Enno Mammen,
M. Dolores Martínez-Miranda and
Jens P. Nielsen
Journal of the American Statistical Association, 2021, vol. 116, issue 536, 1983-1993
Abstract:
Smooth backfitting has proven to have a number of theoretical and practical advantages in structured regression. By projecting the data down onto the structured space of interest smooth backfitting provides a direct link between data and estimator. This article introduces the ideas of smooth backfitting to survival analysis in a proportional hazard model, where we assume an underlying conditional hazard with multiplicative components. We develop asymptotic theory for the estimator. In a comprehensive simulation study, we show that our smooth backfitting estimator successfully circumvents the curse of dimensionality and outperforms existing estimators. This is especially the case in difficult situations like high number of covariates and/or high correlation between the covariates, where other estimators tend to break down. We use the smooth backfitter in a practical application where we extend recent advances of in-sample forecasting methodology by allowing more information to be incorporated, while still obeying the structured requirements of in-sample forecasting. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1753520 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1983-1993
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1753520
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().