EconPapers    
Economics at your fingertips  
 

The Impact of Churn on Client Value in Health Insurance, Evaluation Using a Random Forest Under Various Censoring Mechanisms

Guillaume Gerber, Yohann Le Faou, Olivier Lopez and Michael Trupin

Journal of the American Statistical Association, 2021, vol. 116, issue 536, 2053-2064

Abstract: Abstract–In the insurance broker market, commissions received by brokers are closely related to so-called “customer value”: the longer a policyholder keeps their contract, the more profit there is for the company and therefore the broker. Hence, predicting the time at which a potential policyholder will surrender their contract is essential to optimize a commercial process and define a prospect scoring. In this article, we propose a weighted random forest model to address this problem. Our model is designed to compensate for the impact of random censoring. We investigate different types of assumptions on the censoring, studying both the cases where it is independent or not from the covariates. We compare our approach with other standard methods which apply in our setting, using simulated and real data analysis. We show that our approach is very competitive in terms of quadratic error in addressing the given problem. Supplementary materials for this article are available online.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1764364 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:536:p:2053-2064

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1764364

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:116:y:2021:i:536:p:2053-2064