Spectral Inference under Complex Temporal Dynamics
Jun Yang and
Zhou Zhou
Journal of the American Statistical Association, 2022, vol. 117, issue 537, 133-155
Abstract:
We develop a unified theory and methodology for the inference of evolutionary Fourier power spectra for a general class of locally stationary and possibly nonlinear processes. In particular, simultaneous confidence regions (SCR) with asymptotically correct coverage rates are constructed for the evolutionary spectral densities on a nearly optimally dense grid of the joint time-frequency domain. A simulation based bootstrap method is proposed to implement the SCR. The SCR enables researchers and practitioners to visually evaluate the magnitude and pattern of the evolutionary power spectra with asymptotically accurate statistical guarantee. The SCR also serves as a unified tool for a wide range of statistical inference problems in time-frequency analysis ranging from tests for white noise, stationarity and time-frequency separability to the validation for non-stationary linear models.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1764365 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:537:p:133-155
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1764365
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().