Smoothing Spline Semiparametric Density Models
Jiahui Yu,
Jian Shi,
Anna Liu and
Yuedong Wang
Journal of the American Statistical Association, 2022, vol. 117, issue 537, 237-250
Abstract:
Density estimation plays a fundamental role in many areas of statistics and machine learning. Parametric, nonparametric, and semiparametric density estimation methods have been proposed in the literature. Semiparametric density models are flexible in incorporating domain knowledge and uncertainty regarding the shape of the density function. Existing literature on semiparametric density models is scattered and lacks a systematic framework. In this article, we consider a unified framework based on reproducing kernel Hilbert space for modeling, estimation, computation, and theory. We propose general semiparametric density models for both a single sample and multiple samples which include many existing semiparametric density models as special cases. We develop penalized likelihood based estimation methods and computational methods under different situations. We establish joint consistency and derive convergence rates of the proposed estimators for both finite dimensional Euclidean parameters and an infinite-dimensional functional parameter. We validate our estimation methods empirically through simulations and an application. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1769636 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:537:p:237-250
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1769636
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().