EconPapers    
Economics at your fingertips  
 

Mean and Covariance Estimation for Functional Snippets

Zhenhua Lin and Jane-Ling Wang

Journal of the American Statistical Association, 2022, vol. 117, issue 537, 348-360

Abstract: We consider estimation of mean and covariance functions of functional snippets, which are short segments of functions possibly observed irregularly on an individual specific subinterval that is much shorter than the entire study interval. Estimation of the covariance function for functional snippets is challenging since information for the far off-diagonal regions of the covariance structure is completely missing. We address this difficulty by decomposing the covariance function into a variance function component and a correlation function component. The variance function can be effectively estimated nonparametrically, while the correlation part is modeled parametrically, possibly with an increasing number of parameters, to handle the missing information in the far off-diagonal regions. Both theoretical analysis and numerical simulations suggest that this hybrid strategy is effective. In addition, we propose a new estimator for the variance of measurement errors and analyze its asymptotic properties. This estimator is required for the estimation of the variance function from noisy measurements. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1777138 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:537:p:348-360

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1777138

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:348-360