EconPapers    
Economics at your fingertips  
 

Distribution-Free Consistent Independence Tests via Center-Outward Ranks and Signs

Hongjian Shi, Mathias Drton and Fang Han

Journal of the American Statistical Association, 2022, vol. 117, issue 537, 395-410

Abstract: This article investigates the problem of testing independence of two random vectors of general dimensions. For this, we give for the first time a distribution-free consistent test. Our approach combines distance covariance with the center-outward ranks and signs developed by Marc Hallin and collaborators. In technical terms, the proposed test is consistent and distribution-free in the family of multivariate distributions with nonvanishing (Lebesgue) probability densities. Exploiting the (degenerate) U-statistic structure of the distance covariance and the combinatorial nature of Hallin’s center-outward ranks and signs, we are able to derive the limiting null distribution of our test statistic. The resulting asymptotic approximation is accurate already for moderate sample sizes and makes the test implementable without requiring permutation. The limiting distribution is derived via a more general result that gives a new type of combinatorial noncentral limit theorem for double- and multiple-indexed permutation statistics. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1782223 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:537:p:395-410

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1782223

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:395-410