Estimating a Change Point in a Sequence of Very High-Dimensional Covariance Matrices
Holger Dette,
Guangming Pan and
Qing Yang
Journal of the American Statistical Association, 2022, vol. 117, issue 537, 444-454
Abstract:
This article considers the problem of estimating a change point in the covariance matrix in a sequence of high-dimensional vectors, where the dimension is substantially larger than the sample size. A two-stage approach is proposed to efficiently estimate the location of the change point. The first step consists of a reduction of the dimension to identify elements of the covariance matrices corresponding to significant changes. In a second step, we use the components after dimension reduction to determine the position of the change point. Theoretical properties are developed for both steps, and numerical studies are conducted to support the new methodology. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1785477 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:537:p:444-454
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1785477
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().