EconPapers    
Economics at your fingertips  
 

Toward Causal Inference for Spatio-Temporal Data: Conflict and Forest Loss in Colombia

Rune Christiansen, Matthias Baumann, Tobias Kuemmerle, Miguel D. Mahecha and Jonas Peters

Journal of the American Statistical Association, 2022, vol. 117, issue 538, 591-601

Abstract: How does armed conflict influence tropical forest loss? For Colombia, both enhancing and reducing effect estimates have been reported. However, a lack of causal methodology has prevented establishing clear causal links between these two variables. In this work, we propose a class of causal models for spatio-temporal stochastic processes which allows us to formally define and quantify the causal effect of a vector of covariates X on a real-valued response Y. We introduce a procedure for estimating causal effects and a nonparametric hypothesis test for these effects being zero. Our application is based on geospatial information on conflict events and remote-sensing-based data on forest loss between 2000 and 2018 in Colombia. Across the entire country, we estimate the effect to be slightly negative (conflict reduces forest loss) but insignificant (P = 0.578), while at the provincial level, we find both positive effects (e.g., La Guajira, P = 0.047) and negative effects (e.g., Magdalena, P = 0.004). The proposed methods do not make strong distributional assumptions, and allow for arbitrarily many latent confounders, given that these confounders do not vary across time. Our theoretical findings are supported by simulations, and code is available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.2013241 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:538:p:591-601

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.2013241

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:591-601