The Hellinger Correlation
Gery Geenens and
Pierre Lafaye de Micheaux
Journal of the American Statistical Association, 2022, vol. 117, issue 538, 639-653
Abstract:
In this article, the defining properties of any valid measure of the dependence between two continuous random variables are revisited and complemented with two original ones, shown to imply other usual postulates. While other popular choices are proved to violate some of these requirements, a class of dependence measures satisfying all of them is identified. One particular measure, that we call the Hellinger correlation, appears as a natural choice within that class due to both its theoretical and intuitive appeal. A simple and efficient nonparametric estimator for that quantity is proposed, with its implementation publicly available in the R package HellCor. Synthetic and real-data examples illustrate the descriptive ability of the measure, which can also be used as test statistic for exact independence testing. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1791132 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:538:p:639-653
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1791132
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().