Angle-Based Hierarchical Classification Using Exact Label Embedding
Yiwei Fan,
Xiaoling Lu,
Yufeng Liu and
Junlong Zhao
Journal of the American Statistical Association, 2022, vol. 117, issue 538, 704-717
Abstract:
Hierarchical classification problems are commonly seen in practice. However, most existing methods do not fully use the hierarchical information among class labels. In this article, a novel label embedding approach is proposed, which keeps the hierarchy of labels exactly, and reduces the complexity of the hypothesis space significantly. Based on the newly proposed label embedding approach, a new angle-based classifier is developed for hierarchical classification. Moreover, to handle massive data, a new (weighted) linear loss is designed, which has a closed form solution and is computationally efficient. Theoretical properties of the new method are established and intensive numerical comparisons with other methods are conducted. Both simulations and applications in document categorization demonstrate the advantages of the proposed method. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1801450 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:538:p:704-717
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1801450
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().