EconPapers    
Economics at your fingertips  
 

Nonparametric Maximum Likelihood Methods for Binary Response Models With Random Coefficients

Jiaying Gu and Roger Koenker

Journal of the American Statistical Association, 2022, vol. 117, issue 538, 732-751

Abstract: The venerable method of maximum likelihood has found numerous recent applications in nonparametric estimation of regression and shape constrained densities. For mixture models the nonparametric maximum likelihood estimator (NPMLE) of Kiefer and Wolfowitz plays a central role in recent developments of empirical Bayes methods. The NPMLE has also been proposed by Cosslett as an estimation method for single index linear models for binary response with random coefficients. However, computational difficulties have hindered its application. Combining recent developments in computational geometry and convex optimization, we develop a new approach to computation for such models that dramatically increases their computational tractability. Consistency of the method is established for an expanded profile likelihood formulation. The methods are evaluated in simulation experiments, compared to the deconvolution methods of Gautier and Kitamura and illustrated in an application to modal choice for journey-to-work data in the Washington DC area. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1802284 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:538:p:732-751

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1802284

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:732-751