EconPapers    
Economics at your fingertips  
 

Bayesian Regression Using a Prior on the Model Fit: The R2-D2 Shrinkage Prior

Yan Dora Zhang, Brian P. Naughton, Howard D. Bondell and Brian J. Reich

Journal of the American Statistical Association, 2022, vol. 117, issue 538, 862-874

Abstract: Prior distributions for high-dimensional linear regression require specifying a joint distribution for the unobserved regression coefficients, which is inherently difficult. We instead propose a new class of shrinkage priors for linear regression via specifying a prior first on the model fit, in particular, the coefficient of determination, and then distributing through to the coefficients in a novel way. The proposed method compares favorably to previous approaches in terms of both concentration around the origin and tail behavior, which leads to improved performance both in posterior contraction and in empirical performance. The limiting behavior of the proposed prior is 1/x , both around the origin and in the tails. This behavior is optimal in the sense that it simultaneously lies on the boundary of being an improper prior both in the tails and around the origin. None of the existing shrinkage priors obtain this behavior in both regions simultaneously. We also demonstrate that our proposed prior leads to the same near-minimax posterior contraction rate as the spike-and-slab prior. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1825449 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:538:p:862-874

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1825449

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:862-874