EconPapers    
Economics at your fingertips  
 

Asymptotic Theory of Eigenvectors for Random Matrices With Diverging Spikes

Jianqing Fan, Yingying Fan, Xiao Han and Jinchi Lv

Journal of the American Statistical Association, 2022, vol. 117, issue 538, 996-1009

Abstract: Characterizing the asymptotic distributions of eigenvectors for large random matrices poses important challenges yet can provide useful insights into a range of statistical applications. To this end, in this article we introduce a general framework of asymptotic theory of eigenvectors for large spiked random matrices with diverging spikes and heterogeneous variances, and establish the asymptotic properties of the spiked eigenvectors and eigenvalues for the scenario of the generalized Wigner matrix noise. Under some mild regularity conditions, we provide the asymptotic expansions for the spiked eigenvalues and show that they are asymptotically normal after some normalization. For the spiked eigenvectors, we establish asymptotic expansions for the general linear combination and further show that it is asymptotically normal after some normalization, where the weight vector can be arbitrary. We also provide a more general asymptotic theory for the spiked eigenvectors using the bilinear form. Simulation studies verify the validity of our new theoretical results. Our family of models encompasses many popularly used ones such as the stochastic block models with or without overlapping communities for network analysis and the topic models for text analysis, and our general theory can be exploited for statistical inference in these large-scale applications. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1840990 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:538:p:996-1009

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1840990

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:996-1009