EconPapers    
Economics at your fingertips  
 

Regression Analysis of Asynchronous Longitudinal Functional and Scalar Data

Ting Li, Tengfei Li, Zhongyi Zhu and Hongtu Zhu

Journal of the American Statistical Association, 2022, vol. 117, issue 539, 1228-1242

Abstract: Many modern large-scale longitudinal neuroimaging studies, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, have collected/are collecting asynchronous scalar and functional variables that are measured at distinct time points. The analyses of temporally asynchronous functional and scalar variables pose major technical challenges to many existing statistical approaches. We propose a class of generalized functional partial-linear varying-coefficient models to appropriately deal with these challenges through introducing both scalar and functional coefficients of interest and using kernel weighting methods. We design penalized kernel-weighted estimating equations to estimate scalar and functional coefficients, in which we represent functional coefficients by using a rich truncated tensor product penalized B-spline basis. We establish the theoretical properties of scalar and functional coefficient estimators including consistency, convergence rate, prediction accuracy, and limiting distributions. We also propose a bootstrap method to test the nullity of both parametric and functional coefficients, while establishing the bootstrap consistency. Simulation studies and the analysis of the ADNI study are used to assess the finite sample performance of our proposed approach. Our real data analysis reveals significant relationship between fractional anisotropy density curves and cognitive function with education, baseline disease status and APOE4 gene as major contributing factors. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1844211 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1228-1242

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1844211

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1228-1242