Smaller p-Values via Indirect Information
Peter Hoff
Journal of the American Statistical Association, 2022, vol. 117, issue 539, 1254-1269
Abstract:
This article develops p-values for evaluating means of normal populations that make use of indirect or prior information. A p-value of this type is based on a biased frequentist hypothesis test that has optimal average power with respect to a probability distribution that encodes indirect information about the mean parameter, resulting in a smaller p-value if the indirect information is accurate. In a variety of multiparameter settings, we show how to adaptively estimate the indirect information for each mean parameter while still maintaining uniformity of the p-values under their null hypotheses. This is done using a linking model through which indirect information about the mean of one population may be obtained from the data of other populations. Importantly, the linking model does not need to be correct to maintain the uniformity of the p-values under their null hypotheses. This methodology is illustrated in several data analysis scenarios, including small area inference, spatially arranged populations, interactions in linear regression, and generalized linear models. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1844720 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1254-1269
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1844720
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().