Mehler’s Formula, Branching Process, and Compositional Kernels of Deep Neural Networks
Tengyuan Liang and
Hai Tran-Bach
Journal of the American Statistical Association, 2022, vol. 117, issue 539, 1324-1337
Abstract:
Abstract–We use a connection between compositional kernels and branching processes via Mehler’s formula to study deep neural networks. This new probabilistic insight provides us a novel perspective on the mathematical role of activation functions in compositional neural networks. We study the unscaled and rescaled limits of the compositional kernels and explore the different phases of the limiting behavior, as the compositional depth increases. We investigate the memorization capacity of the compositional kernels and neural networks by characterizing the interplay among compositional depth, sample size, dimensionality, and nonlinearity of the activation. Explicit formulas on the eigenvalues of the compositional kernel are provided, which quantify the complexity of the corresponding reproducing kernel Hilbert space. On the methodological front, we propose a new random features algorithm, which compresses the compositional layers by devising a new activation function. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1853547 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1324-1337
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1853547
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().