EconPapers    
Economics at your fingertips  
 

Multiscale Quantile Segmentation

Laura Jula Vanegas, Merle Behr and Axel Munk

Journal of the American Statistical Association, 2022, vol. 117, issue 539, 1384-1397

Abstract: We introduce a new methodology for analyzing serial data by quantile regression assuming that the underlying quantile function consists of constant segments. The procedure does not rely on any distributional assumption besides serial independence. It is based on a multiscale statistic, which allows to control the (finite sample) probability for selecting the correct number of segments S at a given error level, which serves as a tuning parameter. For a proper choice of this parameter, this probability tends exponentially fast to one, as sample size increases. We further show that the location and size of segments are estimated at minimax optimal rate (compared to a Gaussian setting) up to a log-factor. Thereby, our approach leads to (asymptotically) uniform confidence bands for the entire quantile regression function in a fully nonparametric setup. The procedure is efficiently implemented using dynamic programming techniques with double heap structures, and software is provided. Simulations and data examples from genetic sequencing and ion channel recordings confirm the robustness of the proposed procedure, which at the same time reliably detects changes in quantiles from arbitrary distributions with precise statistical guarantees. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1859380 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1384-1397

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1859380

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1384-1397