EconPapers    
Economics at your fingertips  
 

Semiparametric Inference for Nonmonotone Missing-Not-at-Random Data: The No Self-Censoring Model

Daniel Malinsky, Ilya Shpitser and Eric J. Tchetgen Tchetgen

Journal of the American Statistical Association, 2022, vol. 117, issue 539, 1415-1423

Abstract: We study the identification and estimation of statistical functionals of multivariate data missing nonmonotonically and not-at-random, taking a semiparametric approach. Specifically, we assume that the missingness mechanism satisfies what has been previously called “no self-censoring” or “itemwise conditionally independent nonresponse,” which roughly corresponds to the assumption that no partially observed variable directly determines its own missingness status. We show that this assumption, combined with an odds ratio parameterization of the joint density, enables identification of functionals of interest, and we establish the semiparametric efficiency bound for the nonparametric model satisfying this assumption. We propose a practical augmented inverse probability weighted estimator, and in the setting with a (possibly high-dimensional) always-observed subset of covariates, our proposed estimator enjoys a certain double-robustness property. We explore the performance of our estimator with simulation experiments and on a previously studied dataset of HIV-positive mothers in Botswana. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1862669 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1415-1423

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1862669

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1415-1423