EconPapers    
Economics at your fingertips  
 

Minimax Efficient Random Experimental Design Strategies With Application to Model-Robust Design for Prediction

Timothy W. Waite and David C. Woods

Journal of the American Statistical Association, 2022, vol. 117, issue 539, 1452-1465

Abstract: In game theory and statistical decision theory, a random (i.e., mixed) decision strategy often outperforms a deterministic strategy in minimax expected loss. As experimental design can be viewed as a game pitting the Statistician against Nature, the use of a random strategy to choose a design will often be beneficial. However, the topic of minimax-efficient random strategies for design selection is mostly unexplored, with consideration limited to Fisherian randomization of the allocation of a predetermined set of treatments to experimental units. Here, for the first time, novel and more flexible random design strategies are shown to have better properties than their deterministic counterparts in linear model estimation and prediction, including stronger bounds on both the expectation and survivor function of the loss distribution. Design strategies are considered for three important statistical problems: (i) parameter estimation in linear potential outcomes models, (ii) point prediction from a correct linear model, and (iii) global prediction from a linear model taking into account an L2-class of possible model discrepancy functions. The new random design strategies proposed for (iii) give a finite bound on the expected loss, a dramatic improvement compared to existing deterministic exact designs for which the expected loss is unbounded. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1863221 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1452-1465

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2020.1863221

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1452-1465