Covariate Information Number for Feature Screening in Ultrahigh-Dimensional Supervised Problems
Debmalya Nandy,
Francesca Chiaromonte and
Runze Li
Journal of the American Statistical Association, 2022, vol. 117, issue 539, 1516-1529
Abstract:
Contemporary high-throughput experimental and surveying techniques give rise to ultrahigh-dimensional supervised problems with sparse signals; that is, a limited number of observations (n), each with a very large number of covariates (p≫n) , only a small share of which is truly associated with the response. In these settings, major concerns on computational burden, algorithmic stability, and statistical accuracy call for substantially reducing the feature space by eliminating redundant covariates before the use of any sophisticated statistical analysis. Along the lines of Pearson’s correlation coefficient-based sure independence screening and other model- and correlation-based feature screening methods, we propose a model-free procedure called covariate information number-sure independence screening (CIS). CIS uses a marginal utility connected to the notion of the traditional Fisher information, possesses the sure screening property, and is applicable to any type of response (features) with continuous features (response). Simulations and an application to transcriptomic data on rats reveal the comparative strengths of CIS over some popular feature screening methods. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2020.1864380 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1516-1529
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2020.1864380
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().