Variation and Covariation in Large-Scale Replication Projects: An Evaluation of Replicability
Blakeley B. McShane,
Ulf Böckenholt and
Karsten T. Hansen
Journal of the American Statistical Association, 2022, vol. 117, issue 540, 1605-1621
Abstract:
Over the last decade, large-scale replication projects across the biomedical and social sciences have reported relatively low replication rates. In these large-scale replication projects, replication has typically been evaluated based on a single replication study of some original study and dichotomously as successful or failed. However, evaluations of replicability that are based on a single study and are dichotomous are inadequate, and evaluations of replicability should instead be based on multiple studies, be continuous, and be multi-faceted. Further, such evaluations are in fact possible due to two characteristics shared by many large-scale replication projects. In this article, we provide such an evaluation for two prominent large-scale replication projects, one which replicated a phenomenon from cognitive psychology and another which replicated 13 phenomena from social psychology and behavioral economics. Our results indicate a very high degree of replicability in the former and a medium to low degree of replicability in the latter. They also suggest an unidentified covariate in each, namely ocular dominance in the former and political ideology in the latter, that is theoretically pertinent. We conclude by discussing evaluations of replicability at large, recommendations for future large-scale replication projects, and design-based model generalization. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2054816 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1605-1621
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2054816
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().