EconPapers    
Economics at your fingertips  
 

Functional Mixed Effects Clustering with Application to Longitudinal Urologic Chronic Pelvic Pain Syndrome Symptom Data

Wensheng Guo, Mengying You, Jialin Yi, Michel A. Pontari and J. Richard Landis

Journal of the American Statistical Association, 2022, vol. 117, issue 540, 1631-1641

Abstract: By clustering patients with the urologic chronic pelvic pain syndromes (UCPPS) into homogeneous subgroups and associating these subgroups with baseline covariates and other clinical outcomes, we provide opportunities to investigate different potential elements of pathogenesis, which may also guide us in selection of appropriate therapeutic targets. Motivated by the longitudinal urologic symptom data with extensive subject heterogeneity and differential variability of trajectories, we propose a functional clustering procedure where each subgroup is modeled by a functional mixed effects model, and the posterior probability is used to iteratively classify each subject into different subgroups. The classification takes into account both group-average trajectories and between-subject variabilities. We develop an equivalent state-space model for efficient computation. We also propose a cross-validation based Kullback–Leibler information criterion to choose the optimal number of subgroups. The performance of the proposed method is assessed through a simulation study. We apply our methods to longitudinal bi-weekly measures of a primary urological urinary symptoms score from a UCPPS longitudinal cohort study, and identify four subgroups ranging from moderate decline, mild decline, stable and mild increasing. The resulting clusters are also associated with the one-year changes in several clinically important outcomes, and are also related to several clinically relevant baseline predictors, such as sleep disturbance score, physical quality of life and painful urgency. Supplementary materials for this article are available online.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2066536 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1631-1641

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2066536

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1631-1641