Linear Hypothesis Testing in Linear Models With High-Dimensional Responses
Changcheng Li Runze Li
Journal of the American Statistical Association, 2022, vol. 117, issue 540, 1738-1750
Abstract:
In this article, we propose a new projection test for linear hypotheses on regression coefficient matrices in linear models with high-dimensional responses. We systematically study the theoretical properties of the proposed test. We first derive the optimal projection matrix for any given projection dimension to achieve the best power and provide an upper bound for the optimal dimension of projection matrix. We further provide insights into how to construct the optimal projection matrix. One- and two-sample mean problems can be formulated as special cases of linear hypotheses studied in this article. We both theoretically and empirically demonstrate that the proposed test can outperform the existing ones for one- and two-sample mean problems. We conduct Monte Carlo simulation to examine the finite sample performance and illustrate the proposed test by a real data example.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1884561 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1738-1750
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1884561
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().