EconPapers    
Economics at your fingertips  
 

On the Hauck–Donner Effect in Wald Tests: Detection, Tipping Points, and Parameter Space Characterization

Thomas W. Yee

Journal of the American Statistical Association, 2022, vol. 117, issue 540, 1763-1774

Abstract: The Wald test remains ubiquitous in statistical practice despite shortcomings such as its inaccuracy in small samples and lack of invariance under reparameterization. This article develops on another but lesser-known shortcoming called the Hauck–Donner effect (HDE) whereby a Wald test statistic is no longer monotone increasing as a function of increasing distance between the parameter estimate and the null value. Resulting in an upward biased p-value and loss of power, the aberration can lead to very damaging consequences such as in variable selection. The HDE afflicts many types of regression models and corresponds to estimates near the boundary of the parameter space. This article presents several new results, and its main contributions are to (i) propose a very general test for detecting the HDE in the class of vector generalized linear models (VGLMs), regardless of the underlying cause; (ii) fundamentally characterize the HDE by pairwise ratios of Wald and Rao score and likelihood ratio test statistics for 1-parameter distributions with large samples; (iii) show that the parameter space may be partitioned into an interior encased by at least 5 HDE severity measures (faint, weak, moderate, strong, extreme); (iv) prove that a necessary condition for the HDE in a 2 by 2 table is a log odds ratio of at least 2; (v) give some practical guidelines about HDE-free hypothesis testing. Overall, practical post-fit tests can now be conducted potentially to any model estimated by iteratively reweighted least squares, especially the GLM and VGLM classes, the latter which encompasses many popular regression models.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1886936 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1763-1774

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1886936

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1763-1774