Variable Selection in the Presence of Factors: A Model Selection Perspective
Gonzalo García-Donato and
Rui Paulo
Journal of the American Statistical Association, 2022, vol. 117, issue 540, 1847-1857
Abstract:
In the context of a Gaussian multiple regression model, we address the problem of variable selection when in the list of potential predictors there are factors, that is, categorical variables. We adopt a model selection perspective, that is, we approach the problem by constructing a class of models, each corresponding to a particular selection of active variables. The methodology is Bayesian and proceeds by computing the posterior probability of each of these models. We highlight the fact that the set of competing models depends on the dummy variable representation of the factors, an issue already documented by Fernández et al. in a particular example but that has not received any attention since then. We construct methodology that circumvents this problem and that presents very competitive frequentist behavior when compared with recently proposed techniques. Additionally, it is fully automatic, in that it does not require the specification of any tuning parameters.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1889565 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1847-1857
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1889565
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().