EconPapers    
Economics at your fingertips  
 

On Characterizations and Tests of Benford’s Law

Lucio Barabesi, Andrea Cerasa, Andrea Cerioli and Domenico Perrotta

Journal of the American Statistical Association, 2022, vol. 117, issue 540, 1887-1903

Abstract: Benford’s law defines a probability distribution for patterns of significant digits in real numbers. When the law is expected to hold for genuine observations, deviation from it can be taken as evidence of possible data manipulation. We derive results on a transform of the significand function that provide motivation for new tests of conformance to Benford’s law exploiting its sum-invariance characterization. We also study the connection between sum invariance of the first digit and the corresponding marginal probability distribution. We approximate the exact distribution of the new test statistics through a computationally efficient Monte Carlo algorithm. We investigate the power of our tests under different alternatives and we point out relevant situations in which they are clearly preferable to the available procedures. Finally, we show the application potential of our approach in the context of fraud detection in international trade.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1891927 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1887-1903

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1891927

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1887-1903