EconPapers    
Economics at your fingertips  
 

Robust Two-Step Wavelet-Based Inference for Time Series Models

Stéphane Guerrier, Roberto Molinari, Maria-Pia Victoria-Feser () and Haotian Xu

Journal of the American Statistical Association, 2022, vol. 117, issue 540, 1996-2013

Abstract: Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. We first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator, we then develop the asymptotic properties of two-step robust estimators using the framework of the generalized method of wavelet moments (GMWM). Simulation studies illustrate the good finite sample performance of the robust GMWM estimator and applied examples highlight the practical relevance of the proposed approach.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1895176 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1996-2013

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1895176

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1996-2013