Testing Mediation Effects Using Logic of Boolean Matrices
Chengchun Shi and
Lexin Li
Journal of the American Statistical Association, 2022, vol. 117, issue 540, 2014-2027
Abstract:
A central question in high-dimensional mediation analysis is to infer the significance of individual mediators. The main challenge is that the total number of potential paths that go through any mediator is super-exponential in the number of mediators. Most existing mediation inference solutions either explicitly impose that the mediators are conditionally independent given the exposure, or ignore any potential directed paths among the mediators. In this article, we propose a novel hypothesis testing procedure to evaluate individual mediation effects, while taking into account potential interactions among the mediators. Our proposal thus fills a crucial gap, and greatly extends the scope of existing mediation tests. Our key idea is to construct the test statistic using the logic of Boolean matrices, which enables us to establish the proper limiting distribution under the null hypothesis. We further employ screening, data splitting, and decorrelated estimation to reduce the bias and increase the power of the test. We show that our test can control both the size and false discovery rate asymptotically, and the power of the test approaches one, while allowing the number of mediators to diverge to infinity with the sample size. We demonstrate the efficacy of the method through simulations and a neuroimaging study of Alzheimer’s disease. A Python implementation of the proposed procedure is available at https://github.com/callmespring/LOGAN.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1895177 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2014-2027
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1895177
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().