EconPapers    
Economics at your fingertips  
 

Network Functional Varying Coefficient Model

Xuening Zhu, Zhanrui Cai and Yanyuan Ma

Journal of the American Statistical Association, 2022, vol. 117, issue 540, 2074-2085

Abstract: We consider functional responses with network dependence observed for each individual at irregular time points. To model both the interindividual dependence and within-individual dynamic correlation, we propose a network functional varying coefficient (NFVC) model. The response of each individual is characterized by a linear combination of responses from its connected nodes and its exogenous covariates. All the model coefficients are allowed to be time dependent. The NFVC model adds to the richness of both the classical network autoregression model and the functional regression models. To overcome the complexity caused by the network interdependence, we devise a special nonparametric least-squares-type estimator, which is feasible when the responses are observed at irregular time points for different individuals. The estimator takes advantage of the sparsity of the network structure to reduce the computational burden. To further conduct the functional principal component analysis, a novel within-individual covariance function estimation method is proposed and studied. Theoretical properties of our estimators, which involve techniques related to empirical processes, nonparametrics, functional data analysis and various concentration inequalities, are analyzed. We analyze a social network dataset to illustrate the powerfulness of the proposed procedure.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1901718 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2074-2085

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1901718

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2074-2085