Nonparametric Fusion Learning for Multiparameters: Synthesize Inferences From Diverse Sources Using Data Depth and Confidence Distribution
Dungang Liu,
Regina Y. Liu and
Min-ge Xie
Journal of the American Statistical Association, 2022, vol. 117, issue 540, 2086-2104
Abstract:
Fusion learning refers to synthesizing inferences from multiple sources or studies to make a more effective inference and prediction than from any individual source or study alone. Most existing methods for synthesizing inferences rely on parametric model assumptions, such as normality, which often do not hold in practice. We propose a general nonparametric fusion learning framework for synthesizing inferences for multiparameters from different studies. The main tool underlying the proposed framework is the new notion of depth confidence distribution (depth-CD), which is developed by combining data depth and confidence distribution. Broadly speaking, a depth-CD is a data-driven nonparametric summary distribution of the available inferential information for a target parameter. We show that a depth-CD is a powerful inferential tool and, moreover, is an omnibus form of confidence regions, whose contours of level sets shrink toward the true parameter value. The proposed fusion learning approach combines depth-CDs from the individual studies, with each depth-CD constructed by nonparametric bootstrap and data depth. The approach is shown to be efficient, general and robust. Specifically, it achieves high-order accuracy and Bahadur efficiency under suitably chosen combining elements. It allows the model or inference structure to be different among individual studies. And, it readily adapts to heterogeneous studies with a broad range of complex and irregular settings. This last property enables the approach to use indirect evidence from incomplete studies to gain efficiency for the overall inference. We develop the theoretical support for the proposed approach, and we also illustrate the approach in making combined inference for the common mean vector and correlation coefficient from several studies. The numerical results from simulated studies show the approach to be less biased and more efficient than the traditional approaches in nonnormal settings. The advantages of the approach are also demonstrated in a Federal Aviation Administration study of aircraft landing performance. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1902817 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2086-2104
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1902817
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().