Individual Data Protected Integrative Regression Analysis of High-Dimensional Heterogeneous Data
Tianxi Cai,
Molei Liu and
Yin Xia
Journal of the American Statistical Association, 2022, vol. 117, issue 540, 2105-2119
Abstract:
Evidence-based decision making often relies on meta-analyzing multiple studies, which enables more precise estimation and investigation of generalizability. Integrative analysis of multiple heterogeneous studies is, however, highly challenging in the ultra high-dimensional setting. The challenge is even more pronounced when the individual-level data cannot be shared across studies, known as DataSHIELD contraint. Under sparse regression models that are assumed to be similar yet not identical across studies, we propose in this paper a novel integrative estimation procedure for data-Shielding High-dimensional Integrative Regression (SHIR). SHIR protects individual data through summary-statistics-based integrating procedure, accommodates between-study heterogeneity in both the covariate distribution and model parameters, and attains consistent variable selection. Theoretically, SHIR is statistically more efficient than the existing distributed approaches that integrate debiased LASSO estimators from the local sites. Furthermore, the estimation error incurred by aggregating derived data is negligible compared to the statistical minimax rate and SHIR is shown to be asymptotically equivalent in estimation to the ideal estimator obtained by sharing all data. The finite-sample performance of our method is studied and compared with existing approaches via extensive simulation settings. We further illustrate the utility of SHIR to derive phenotyping algorithms for coronary artery disease using electronic health records data from multiple chronic disease cohorts.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1904958 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2105-2119
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1904958
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().