Testing Independence Under Biased Sampling
Yaniv Tenzer,
Micha Mandel and
Or Zuk
Journal of the American Statistical Association, 2022, vol. 117, issue 540, 2194-2206
Abstract:
Testing for dependence between pairs of random variables is a fundamental problem in statistics. In some applications, data are subject to selection bias that can create spurious dependence. An important example is truncation models, in which observed pairs are restricted to a specific subset of the X-Y plane. Standard tests for independence are not suitable in such cases, and alternative tests that take the selection bias into account are required. Here, we generalize the notion of quasi-independence with respect to the sampling mechanism, and study the problem of detecting any deviations from it. We develop two tests statistics motivated by the classic Hoeffding’s statistic, and use two approaches to compute their distribution under the null: (i) a bootstrap-based approach, and (ii) a permutation-test with nonuniform probability of permutations. We also handle an important application to the case of censoring with truncation, by estimating the biased sampling mechanism from the data. We prove the validity of the tests, and show, using simulations, that they improve power compared to competing methods for important special cases. The tests are applied to four datasets, two that are subject to truncation, with and without censoring, and two to bias mechanisms related to length bias.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1912758 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2194-2206
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1912758
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().