Inference on Multi-level Partial Correlations Based on Multi-subject Time Series Data
Yumou Qiu and
Xiao-Hua Zhou
Journal of the American Statistical Association, 2022, vol. 117, issue 540, 2268-2282
Abstract:
Partial correlations are commonly used to analyze the conditional dependence among variables. In this work, we propose a hierarchical model to study both the subject- and population-level partial correlations based on multi-subject time-series data. Multiple testing procedures adaptive to temporally dependent data with false discovery proportion control are proposed to identify the nonzero partial correlations in both the subject and population levels. A computationally feasible algorithm is developed. Theoretical results and simulation studies demonstrate the good properties of the proposed procedures. We illustrate the application of the proposed methods in a real example of brain connectivity on fMRI data from normal healthy persons and patients with Parkinson’s disease. Supplementary materials for this article are available online.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1917417 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2268-2282
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1917417
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().