Eigen Selection in Spectral Clustering: A Theory-Guided Practice
Xiao Han,
Xin Tong and
Yingying Fan
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 109-121
Abstract:
Based on a Gaussian mixture type model of K components, we derive eigen selection procedures that improve the usual spectral clustering algorithms in high-dimensional settings, which typically act on the top few eigenvectors of an affinity matrix (e.g., X⊤X ) derived from the data matrix X . Our selection principle formalizes two intuitions: (i) eigenvectors should be dropped when they have no clustering power; (ii) some eigenvectors corresponding to smaller spiked eigenvalues should be dropped due to estimation inaccuracy. Our selection procedures lead to new spectral clustering algorithms: ESSC for K = 2 and GESSC for K > 2. The newly proposed algorithms enjoy better stability and compare favorably against canonical alternatives, as demonstrated in extensive simulation and multiple real data studies. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1917418 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:109-121
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1917418
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().