Controlling False Discovery Rate Using Gaussian Mirrors
Xin Xing,
Zhigen Zhao and
Jun S. Liu
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 222-241
Abstract:
Simultaneously, finding multiple influential variables and controlling the false discovery rate (FDR) for linear regression models is a fundamental problem. We here propose the Gaussian Mirror (GM) method, which creates for each predictor variable a pair of mirror variables by adding and subtracting a randomly generated Gaussian perturbation, and proceeds with a certain regression method, such as the ordinary least-square or the Lasso (the mirror variables can also be created after selection). The mirror variables naturally lead to test statistics effective for controlling the FDR. Under a mild assumption on the dependence among the covariates, we show that the FDR can be controlled at any designated level asymptotically. We also demonstrate through extensive numerical studies that the GM method is more powerful than many existing methods for selecting relevant variables subject to FDR control, especially for cases when the covariates are highly correlated and the influential variables are not overly sparse.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1923510 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:222-241
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1923510
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().