Conditional Functional Graphical Models
Kuang-Yao Lee,
Dingjue Ji,
Lexin Li,
Todd Constable and
Hongyu Zhao
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 257-271
Abstract:
Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1924178 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:257-271
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1924178
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().