EconPapers    
Economics at your fingertips  
 

A Common Atoms Model for the Bayesian Nonparametric Analysis of Nested Data

Francesco Denti, Federico Camerlenghi, Michele Guindani and Antonietta Mira

Journal of the American Statistical Association, 2023, vol. 118, issue 541, 405-416

Abstract: The use of large datasets for targeted therapeutic interventions requires new ways to characterize the heterogeneity observed across subgroups of a specific population. In particular, models for partially exchangeable data are needed for inference on nested datasets, where the observations are assumed to be organized in different units and some sharing of information is required to learn distinctive features of the units. In this manuscript, we propose a nested common atoms model (CAM) that is particularly suited for the analysis of nested datasets where the distributions of the units are expected to differ only over a small fraction of the observations sampled from each unit. The proposed CAM allows a two-layered clustering at the distributional and observational level and is amenable to scalable posterior inference through the use of a computationally efficient nested slice sampler algorithm. We further discuss how to extend the proposed modeling framework to handle discrete measurements, and we conduct posterior inference on a real microbiome dataset from a diet swap study to investigate how the alterations in intestinal microbiota composition are associated with different eating habits. We further investigate the performance of our model in capturing true distributional structures in the population by means of a simulation study.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1933499 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:405-416

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1933499

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-12
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:541:p:405-416