Correlation Tensor Decomposition and Its Application in Spatial Imaging Data
Yujia Deng,
Xiwei Tang and
Annie Qu
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 440-456
Abstract:
Multi-dimensional tensor data have gained increasing attention in the recent years, especially in biomedical imaging analyses. However, the most existing tensor models are only based on the mean information of imaging pixels. Motivated by multimodal optical imaging data in a breast cancer study, we develop a new tensor learning approach to use pixel-wise correlation information, which is represented through the higher order correlation tensor. We proposed a novel semi-symmetric correlation tensor decomposition method which effectively captures the informative spatial patterns of pixel-wise correlations to facilitate cancer diagnosis. We establish the theoretical properties for recovering structure and for classification consistency. In addition, we develop an efficient algorithm to achieve computational scalability. Our simulation studies and an application on breast cancer imaging data all indicate that the proposed method outperforms other competing methods in terms of pattern recognition and prediction accuracy.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1938083 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:440-456
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1938083
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().