Improving Predictions When Interest Focuses on Extreme Random Effects
Charles E. McCulloch and
John M. Neuhaus
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 504-513
Abstract:
Statistical models that generate predicted random effects are widely used to evaluate the performance of and rank patients, physicians, hospitals and health plans from longitudinal and clustered data. Predicted random effects have been proven to outperform treating clusters as fixed effects (essentially a categorical predictor variable) and using standard regression models, on average. These predicted random effects are often used to identify extreme or outlying values, such as poorly performing hospitals or patients with rapid declines in their health. When interest focuses on the extremes rather than performance on average, there has been no systematic investigation of best approaches. We develop novel methods for prediction of extreme values, evaluate their performance, and illustrate their application using data from the Osteoarthritis Initiative to predict walking speed in older adults. The new methods substantially outperform standard random and fixed-effects approaches for extreme values.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1938583 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:504-513
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1938583
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().