Capture-Recapture Models with Heterogeneous Temporary Emigration
Eleni Matechou and
Raffaele Argiento
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 56-69
Abstract:
We propose a novel approach for modeling capture-recapture (CR) data on open populations that exhibit temporary emigration, while also accounting for individual heterogeneity to allow for differences in visit patterns and capture probabilities between individuals. Our modeling approach combines changepoint processes—fitted using an adaptive approach—for inferring individual visits, with Bayesian mixture modeling—fitted using a nonparametric approach—for identifying clusters of individuals with similar visit patterns or capture probabilities. The proposed method is extremely flexible as it can be applied to any CR dataset and is not reliant upon specialized sampling schemes, such as Pollock’s robust design. We fit the new model to motivating data on salmon anglers collected annually at the Gaula river in Norway. Our results when analyzing data from the 2017, 2018, and 2019 seasons reveal two clusters of anglers—consistent across years—with substantially different visit patterns. Most anglers are allocated to the “occasional visitors” cluster, making infrequent and shorter visits with mean total length of stay at the river of around seven days, whereas there also exists a small cluster of “super visitors,” with regular and longer visits, with mean total length of stay of around 30 days in a season. Our estimate of the probability of catching salmon whilst at the river is more than three times higher than that obtained when using a model that does not account for temporary emigration, giving us a better understanding of the impact of fishing at the river. Finally, we discuss the effect of the COVID-19 pandemic on the angling population by modeling data from the 2020 season. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2123332 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:56-69
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2123332
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().