EconPapers    
Economics at your fingertips  
 

False Discovery Rate Control Under General Dependence By Symmetrized Data Aggregation

Lilun Du, Xu Guo, Wenguang Sun and Changliang Zou

Journal of the American Statistical Association, 2023, vol. 118, issue 541, 607-621

Abstract: We develop a new class of distribution-free multiple testing rules for false discovery rate (FDR) control under general dependence. A key element in our proposal is a symmetrized data aggregation (SDA) approach to incorporating the dependence structure via sample splitting, data screening, and information pooling. The proposed SDA filter first constructs a sequence of ranking statistics that fulfill global symmetry properties, and then chooses a data-driven threshold along the ranking to control the FDR. The SDA filter substantially outperforms the Knockoff method in power under moderate to strong dependence, and is more robust than existing methods based on asymptotic p-values. We first develop finite-sample theories to provide an upper bound for the actual FDR under general dependence, and then establish the asymptotic validity of SDA for both the FDR and false discovery proportion control under mild regularity conditions. The procedure is implemented in the R package sdafilter. Numerical results confirm the effectiveness and robustness of SDA in FDR control and show that it achieves substantial power gain over existing methods in many settings.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1945459 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:607-621

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1945459

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:541:p:607-621