Estimation of Knots in Linear Spline Models
Guangyu Yang,
Baqun Zhang and
Min Zhang
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 639-650
Abstract:
The linear spline model is able to accommodate nonlinear effects while allowing for an easy interpretation. It has significant applications in studying threshold effects and change-points. However, its application in practice has been limited by the lack of both rigorously studied and computationally convenient method for estimating knots. A key difficulty in estimating knots lies in the nondifferentiability. In this article, we study influence functions of regular and asymptotically linear estimators for linear spline models using the semiparametric theory. Based on the theoretical development, we propose a simple semismooth estimating equation approach to circumvent the nondifferentiability issue using modified derivatives, in contrast to the previous smoothing-based methods. Without relying on any smoothing parameters, the proposed method is computationally convenient. To further improve numerical stability, a two-step algorithm taking advantage of the analytic solution available when knots are known is developed to solve the proposed estimating equation. Consistency and asymptotic normality are rigorously derived using the empirical process theory. Simulation studies have shown that the two-step algorithm performs well in terms of both statistical and computational properties and improves over existing methods. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1947307 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:639-650
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1947307
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().