EconPapers    
Economics at your fingertips  
 

Efficient Estimation for Random Dot Product Graphs via a One-Step Procedure

Fangzheng Xie and Yanxun Xu

Journal of the American Statistical Association, 2023, vol. 118, issue 541, 651-664

Abstract: We propose a one-step procedure to estimate the latent positions in random dot product graphs efficiently. Unlike the classical spectral-based methods, the proposed one-step procedure takes advantage of both the low-rank structure of the expected adjacency matrix and the Bernoulli likelihood information of the sampling model simultaneously. We show that for each vertex, the corresponding row of the one-step estimator (OSE) converges to a multivariate normal distribution after proper scaling and centering up to an orthogonal transformation, with an efficient covariance matrix. The initial estimator for the one-step procedure needs to satisfy the so-called approximate linearization property. The OSE improves the commonly adopted spectral embedding methods in the following sense: Globally for all vertices, it yields an asymptotic sum of squares error no greater than those of the spectral methods, and locally for each vertex, the asymptotic covariance matrix of the corresponding row of the OSE dominates those of the spectral embeddings in spectra. The usefulness of the proposed one-step procedure is demonstrated via numerical examples and the analysis of a real-world Wikipedia graph dataset.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1948419 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:651-664

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1948419

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:541:p:651-664